Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Daqing Shi, ${ }^{\text {a, }}{ }^{\text {b }}$ * Zhengyi Li, ${ }^{\text {b }}$ Chunling Shi, ${ }^{\text {b }}$ Xiangshan Wang ${ }^{\text {b }}$ and Yong Zhang ${ }^{\text {c }}$

${ }^{\text {a }}$ Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China, ${ }^{\text {b }}$ The Key Laboratory of Biotechnology for Medical Plants of Jiangsu Province, Xuzhou 221116, People's Republic of China, and ${ }^{\text {c School of Chemistry and Chemical Engineering, }}$ Suzhou University, Suzhou 215006, People's Republic of China

Correspondence e-mail: dqshi@263.net

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.037$
$w R$ factor $=0.096$
Data-to-parameter ratio $=16.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

3-(4-Chlorophenyl)-3,4-dihydroquinazolin-2(1H)-one

The title compound, $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{O}$, was synthesized by the reaction of N -(4-chlorophenyl)-2-nitrobenzylamine with triphosgene, induced by a low-valent titanium reagent $\left(\mathrm{TiCl}_{4} / \mathrm{Zn}\right)$. The dihydroquinazoline ring adopts a skew-boat conformation.

Comment

Quinazolines are an important class of compound found in many naturally occurring products (e.g. hinckdentine A; Blackman et al., 1987; Billimoria \& Cava, 1994) and employed as potent agents (Helissey et al., 1994; Brana et al., 1994; Riou et al., 1991; Ibrahim et al., 1988). Low-valent titanium reagents have an exceedingly high ability to promote reductive coupling of carbonyl compounds and are attracting increasing interest in organic synthesis (McMurry, 1983; Shi et al., 1993, 1997, 1998, 2003; Shi, Wang et al., 2004). We report here the synthesis and crystal structure of the title compound, (I).

(I)

In (I), the dihydropyrimidine ring adopts a skew-boat conformation; atoms C2/C3/C4/N1 are coplanar, while atoms C 1 and N 2 deviate from the plane by 0.391 (2) and 0.595 (2) A, respectively. A similar conformation was observed in the structure of 5,5-dimethyl-2,3-diphenyl-5,6-di-hydroimidazo[1,2-c]quinazoline (Wu et al., 2004). The dihedral angle between the $\mathrm{C} 3-\mathrm{C} 8$ and $\mathrm{C} 9-\mathrm{C} 14$ benzene rings is $60.0(2)^{\circ}$. In addition, because of the existence of a conjugated system, the $\mathrm{N} 1-\mathrm{C} 4 \quad[1.4006(18) \AA]$ and $\mathrm{N} 1-\mathrm{C} 1$ $[1.3589$ (17) \AA] distances are significantly shorter than the

Figure 1
The molecular structure of (I), showing 40% probability displacement ellipsoids and the atom-numbering scheme.

Received 30 September 2004
Accepted 6 October 2004 Online 16 October 2004
typical Csp ${ }^{2}-\mathrm{N}$ bond distance (1.426 \AA; Lorente et al., 1995). The molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) to form dimers (Fig. 2).

Experimental

The title compound, (I), was prepared by the reaction of N -(4-chlorophenyl)-2-nitrobenzylamine ($0.53 \mathrm{~g}, 2 \mathrm{mmol}$) with triphosgene ($0.89 \mathrm{~g}, 3 \mathrm{mmol}$), induced by a low-valent titanium reagent $\left(\mathrm{TiCl}_{4} / \mathrm{Zn}\right)$ (yield 83%, m.p. $552-553 \mathrm{~K}$). Single crystals suitable for X-ray diffraction were obtained by evaporation of an acetone solution. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $\left.d_{6}, \delta\right): 4.82\left(2 \mathrm{H}, s, \mathrm{CH}_{2}\right), 6.89(1 \mathrm{H}, d, J=$ $8.0 \mathrm{~Hz}, \mathrm{ArH}), 6.93(1 \mathrm{H}, t, J=7,6 \mathrm{~Hz}, \mathrm{ArH}), 7.17(1 \mathrm{H}, d, J=6.8 \mathrm{~Hz}$, $\mathrm{ArH}), 7.21(1 \mathrm{H}, d, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.40-7.47(4 \mathrm{H}, m, \mathrm{ArH}), 9.66$ $(1 \mathrm{H}, s, \mathrm{NH})$. Elemental analysis calculated: C $65.00, \mathrm{H} 4.29, \mathrm{~N} 10.83 \%$; found: C 65.16, H 4.02, N 10.77\%.

Crystal data

```
C}\mp@subsup{\textrm{C}}{4}{}\mp@subsup{\textrm{H}}{11}{}\mp@subsup{\textrm{ClN}}{2}{}\textrm{O
M
Monoclinic, P2 / c
a=9.788(2) \AA
b=13.142 (3) \AA
c=10.114 (2) \AA
\beta=111.329 (4)}\mp@subsup{}{}{\circ
V=1211.9(4) \AA}\mp@subsup{}{}{3
Z=4
```


Data collection

```
Rigaku Mercury CCD
    diffractometer
\omega}\mathrm{ scans
Absorption correction: multi-scan
    (Jacobson, 1998)
    T}\mp@subsup{T}{\mathrm{ min }}{}=0.821,\mp@subsup{T}{\mathrm{ max }}{}=0.91
1 3 1 0 4 \text { measured reflections}
```

 \(D_{x}=1.418 \mathrm{Mg} \mathrm{m}^{-3}\)
 Mo $K \alpha$ radiation
Cell parameters from 5478
reflections
$\theta=3.1-27.5^{\circ}$
$\mu=0.30 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Block, colourless
$0.68 \times 0.52 \times 0.30 \mathrm{~mm}$

2767 independent reflections
2596 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.021$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-12 \rightarrow 12$
$k=-15 \rightarrow 17$
$l=-12 \rightarrow 13$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.096$
$S=1.08$
2767 reflections
168 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.045 P)^{2}\right. \\
& \quad+0.4313 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.23 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

O1-C1	$1.2358(17)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.4317(16)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.3589(17)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.4668(17)$
N1-C4	$1.4006(18)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.4986(19)$
N2-C1	$1.3775(16)$		
C1-N1-C4	$124.12(11)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1$	$121.39(11)$
C1-N2-C	$118.77(11)$	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 2$	$122.87(12)$
C1-N2-C2	$121.35(11)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$115.73(12)$
C9-N2-C2	$117.61(10)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	$111.11(11)$
C4-N1-C1-N2	$-9.71(19)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-26.63(18)$
C9-N2-C1-N1	$176.89(11)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{N} 1$	$1.07(19)$
C2-N2-C1-N1	$-20.61(18)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 8$	$-160.96(13)$
C1-N2-C2-C3	$37.78(18)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	$19.4(2)$
C9-N2-C2-C3	$-159.53(12)$	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 14$	$-59.84(17)$
N2-C2-C3-C5	$156.71(13)$	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10$	$-41.07(17)$

Figure 2
The molecular packing in the crystal structure of (I). Dashed lines indicate $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1 $\cdots \mathrm{O}^{1} 1^{\mathrm{i}}$	$0.861(18)$	$2.012(19)$	$2.8699(15)$	$174.5(16)$
C7-H7 O^{ii}	0.95	2.51	$3.4477(18)$	169

Symmetry codes: (i) $1-x, 1-y, 2-z$; (ii) $1-x, \frac{1}{2}+y, \frac{3}{2}-z$.
The H atom on atom N 1 was refined isotropically, with the $\mathrm{N}-\mathrm{H}$ bond length restrained to 0.86 (2) \AA; other H atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}=0.95-0.99 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Natural Science Foundation of the Education Committee of Jiangsu Province (No. 03 KJB150136) and the Foundation of the Key Laboratory of Biotechnology for Medical Plants of Jiangsu Province (No. 02AXL13) for financial support.

References

Billimoria, A. D. \& Cava, M. P. (1994). J. Org. Chem. 59, 6772-6782.
Blackman, A., Hambley, T. W., Picker, R., Taylor, W. C. \& Thirasana, N. (1987). Tetrahedron Lett. 28, 5561-5564.

Brana, M. F., Castellano, J. M., Keilahauer, G., Machuca, A., Martin, Y., Redondo, C., Schlick, E. \& Walker, N. (1994). Anti-Cancer Drugs Des. 9, 527-538.
Helissey, P., Cros, S. \& Giorgi-Renault, S. (1994). Anti-Cancer Drugs Des. 9, 51-57.
Ibrahim, E. S., Montgomerie, A. M., Sneddon, A. H., Proctor, G. R. \& Green, B. (1988). Eur. J. Med. Chem. 23, 183-188.

Jacobson, R. (1998). Private communication to Rigaku Corporation.
Lorente, A., Galan, C., Fonseea, I. \& Sanz-Aparicio, J. (1995). Can. J. Chem, 73, 1546-1555.
McMurry, J. E. (1983). Acc. Chem. Res. 16, 405-411.
Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.

organic papers

Rigaku/MSC (2003). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Riou, J. F., Helissey, P., Grondard, L. \& Giorgi-Renault, S. (1991). Mol. Pharmacol. 40, 699-706.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc. Madison, Wisconsin, USA.
Shi, D. Q., Chen, J. X., Chai, W. Y., Chen, W. X. \& Kao, T. Y. (1993). Tetrahedron Lett. 34, 2963-2964.

Shi, D. Q., Lu, Z. S. \& Dai, G. Y. (1998). Synth. Commun. 28, $1073-$ 1078.

Shi, D. Q., Mu, L. L., Lu, Z. S. \& Dai, G. Y. (1997). Synth. Commun. 27, 41214129.

Shi, D. Q., Wang, J. X., Shi, C. L., Rong, L. C. \& Hu, H. W. (2004). Synlett, pp. 1098-1100.
Wu, H., Shi, D.-Q., Shi, C.-L., Wang, X.-S., Hu, H.-W. \& Yu, K.-B. (2004). Acta Cryst. E60, o9-o11.

